What is Epigenetics technical articles are geared towards epigenetic research techniques, news, and trends in the field of epigenetics, written by scientists from universities and institutions including UCLA, Hofstra, NIH, Johns Hopkins, and more.

Explore in detail new epigenetic research techniques and tips for topics like next-generation sequencing (NGS) in epigenetics, m6A RNA methylation, CRISPR/Cas9 system epigenetic editing, chromatin immunoprecipitation (ChIP) protocol optimization, and single-cell epigenomics methods.

Want to share your research? Submit your own epigenetics article to be featured.

Advancements in DNA Methylation Analysis Technologies

October 21, 2014 Bailey Kirkpatrick

Recent developments in DNA methylation analysis technologies have made it crucial for researchers to understand which tool is optimal for their epigenetic research. These new methods pose exciting opportunities never before imagined, allowing for epigenetic variation to be connected to phenotypic consequences on a much grander scale and at single-base resolution. In a recent issue of an epigenetics newsletter, The Decoder, scientists at Epigentek discuss the latest progress made in profiling genome-wide and region-specific DNA methylation and offer suggestions on [more…]

A Researcher’s Guide to Successful DNA Bisulfite Conversion

October 14, 2014 Milka Rodriguez

DNA bisulfite conversion is a unique tool used to discriminate between methylated and unmethylated cytosines for DNA methylation studies. Only bisulfite modification of DNA followed by sequencing yields reliable information on the methylation states of individual cytosines at single base resolution. The bisulfite modification technique uses bisulfite salt to deaminate cytosine residues on single-stranded DNA, converting them to uracil while leaving 5-methylcytosine unchanged (Figure 1). To effectively and efficiently prepare converted DNA for use in various downstream analyses, an ideal [more…]

New Single-Cell Bisulfite Sequencing Technique Boosts Epigenetic Research

July 30, 2014 Bailey Kirkpatrick

A new single-cell bisulfite sequencing (scBS-seq) technique that can advance epigenetic experiments has been developed by researchers from BSRC-funded Babraham Institute and the Wellcome Trust Sanger Institute Single Cell Genomics Centre. Using this powerful technique, all epigenetic marks on the DNA within a single cell can be mapped out. This novel method could enhance our understanding of embryonic development and holds promise for improving clinical applications such as fertility treatments and cancer therapy. It may also reduce the amount of [more…]

Global DNA Methylation Analysis: The Best Assay You Haven’t Done Yet

July 24, 2014 Milka Rodriguez

Over the past decade significant advances have been made in methylation profiling technology allowing for highly specific and accurate information about the epigenome of various species. Because the 5mC and 5hmC modifications are widespread with possibly different functions, further insight into their distribution is important. Traditional methylation analysis methods such as mass spec, HPLC and TLC allow high accuracy but also require sophisticated equipment, are not high through-put and most importantly are expensive. Likewise more modern applications such as next [more…]

Scientists at Epigentek Develop Revolutionary Kit to Validate Antibodies for ChIP

July 14, 2014 Bailey Kirkpatrick

Every epigenetics scientist knows that chromatin immunoprecipitation (ChIP) is a valuable technique for studying protein-DNA interactions.  They also know that antibodies used in ChIP to capture the DNA/protein complex must be reliable and specifically recognize the fixed protein that is bound to the chromatin complex. But how can a researcher be certain that the antibodies they are using work well in ChIP?  For many researchers it is not always the case to be “blessed” with a quality ChIP-grade antibody and, unfortunately, [more…]

Quick Tips for Validating Antibodies for Chromatin Immunoprecipitation (ChIP)

June 26, 2014 Bailey Kirkpatrick

Researchers rely on high quality antibodies to perform successful chromatin immunoprecipitation (ChIP) experiments. When investigating the protein-DNA interaction of interest, valid and reliable results simply cannot be attained using nonspecific and inefficient antibodies. If the antibody doesn’t come “ChIP-qualified” or “ChIP-grade” from the supplier, there are several tips you can follow to determine if it’s likely to perform well in ChIP and won’t pull down distracting material to get in the way of a successful study. Carry out the standard [more…]

A Histone Extraction Protocol

January 23, 2014 WhatIsEpigenetics

The following histone extraction protocol was written by scientists at Epigentek and is a recommended and optimized procedure for their histone modification assays, successfully utilized by many research labs. Use these easy to follow steps to ensure proper isolation of histone proteins. For tissues (treated and untreated), weigh the sample and cut the sample into small pieces (1-2 mm3) with a scalpel or scissors. Transfer tissue pieces to a Dounce homogenizer.  Add TEB buffer (PBS containing 0.5% Triton X 100, 2 [more…]

Stem/Early Progenitor Cell Commitment is Directed by Hydroxymethylation at Gene Regulatory Regions During Erythropoiesis

January 7, 2014 Milka Rodriguez

Hematopoietic stem cells (HSCs) are rare bone marrow cells that have self-renewal capability and are multipotent. Upon differentiation, HSCs become progressively lineage-committed and give rise to different mature blood cells. This process involves extrinsic and intrinsic signals that are strongly influenced by the stem cell microenvironment.  Furthermore, differentiation involves silencing of self-renewal genes and induction of a specific transcriptional program. It is not known how epigenetic modifications influences stem cell differentiation and commitment and what specific role these modifications may [more…]

mRNA Stability Is Regulated By Dynamic m6A RNA Methylation

December 18, 2013 Milka Rodriguez

Messenger RNA (mRNA) is a single-stranded RNA molecule that is essential in mediating the transfer of genetic information from DNA by serving as a template for protein synthesis. There are several mechanisms involved in regulating the stability of messenger RNA to influence the level and timing of protein production.  Such mechanisms include regulatory elements such as sequence elements or structural motifs that can target mRNA for degradation. Furthermore, post-transcriptional modifications such as dynamic methylation of mRNA could also be involved [more…]

Conserved, Widespread, Dynamic mRNA Methylation Program in Yeast Meiosis Revealed by High-Resolution Mapping

December 4, 2013 Milka Rodriguez

In eukaryotic RNA, the methylation of adenosine at the N6 position to form N6-methyladenosine (m6A) is the most common and abundant postsynthesis modification known. Until recently, the biological significance of this RNA modification has remained unclear due to technical and experimental limitation. These include: detection methods that are mostly limited to immunoprecipitation; low resolution mapping of m6A around methylation sites which cause precise locations to be unclear; and the lack of an experimental model for depletion of the methylation complex [more…]

1 3 4 5 6 7

WIE-logo-icon

If you like reading our articles…

Join our e-newsletter! Stay up-to-date with our weekly posts on epigenetics and health, nutrition, exercise, and more.