Aging is a normal process linked to specific patterns and changes in the epigenome, particularly DNA methylation. Harnessing epigenetic mechanisms might enable us to slow or reduce human aging in the future as scientific research reveals new associations and insights. After DNA methylation patterns have been established during embryogenesis, researchers investigate how they are maintained, and how the environment can influence changes to marks on top of DNA during a lifespan.

Exploring the Possibility of Extending Lifespan Using Epigenetic Drift

October 3, 2017 Bailey Kirkpatrick

Nearly a century ago, researchers discovered that cutting calorie intake was actually able to extend lifespan in various animal species. Although numerous studies have been conducted since to find out exactly why reducing calories can extend lifespan, scientists have been unable to pinpoint the answer. Now, a group of investigators at the Lewis Katz School of Medicine at Temple University (LKSOM) have uncovered an explanation to the longevity conundrum, something they call “age-related methylation drift.” The senior investigator, Jean-Pierre Issa, [more…]

Epigenetic Enzyme Could Play a Role in Reducing Fat as We Age

May 16, 2017 Bailey Kirkpatrick

Whether we like it or not, we’re faced with many physical changes as we get older. Wrinkles form, bones and muscles grow weaker… even the way fat is distributed throughout the body changes radically. As we age, we lose a certain type of fat cell that burns fatty deposits, which increases the risk for obesity. But there may be hope. Interestingly, researchers are finding that an epigenetic enzyme might be able to prevent this pesky change from happening. Epigenetics has [more…]

Epigenetic Clock Destines Some to Age Faster Regardless of Lifestyle

November 1, 2016 Bailey Kirkpatrick

Certain people will age quicker and die sooner, even if they keep their body healthy, suggests a largescale analysis by UCLA scientists. Regardless of how well you take care of yourself, an accelerated internal epigenetic clock may lead to an earlier death for some. Researchers assessed data from over 13,000 individuals, measuring levels of DNA methylation in hundreds of specific areas on the genome to determine their “epigenetic age.” Epigenetic marks found on DNA and histone proteins are known to [more…]

Certain Ethnic Groups May Epigenetically Age Slower

October 4, 2016 Bailey Kirkpatrick

Scientists have been curious about whether race or ethnicity directly impact molecular markers of aging. Could people of certain race be more likely to age faster or slower? A group of researchers from UCLA conducted a study that was the first of its kind, demonstrating that Latinos actually age more slowly than other ethnic groups. On average, Latinos live three years longer than Caucasians. Even though Latinos are shown to have longer lives, they actually experience a greater rate of [more…]

Can Your Age Influence the Epigenetic Effects of Exercise?

September 27, 2016 Bailey Kirkpatrick

We all know the extensive benefits of exercise: work out to stave off disease, improve mental acuity, lose weight, reduce stress, and so on. But even with all these benefits, there are still some questions surrounding the molecular causes that underlie them. Epigenetics has been particularly helpful in gaining new insights into the wide range of health benefits of exercise. Recently, a study showed that exercise could epigenetically keep the brain healthy by boosting the production of a protein called [more…]

Menopause and Insomnia Might Epigenetically Speed Up Aging

September 13, 2016 Bailey Kirkpatrick

For years, scientists have disagreed on whether menopause causes aging or aging leads to menopause, giving rise to a “which came first” debate. New epigenetic research may help settle this long-standing disagreement, offering evidence that menopause might actually make a woman age faster. Two recent UCLA studies show that menopause and its common side effect – insomnia – may accelerate aging. This could potentially increase a woman’s risk for diseases related to aging and possibly lead to an earlier death. [more…]

Arthritic Joints May Need Different Treatments Due to Diverse Epigenetic Signatures

July 19, 2016 Bailey Kirkpatrick

Arthritis is a widespread, debilitating disease characterized by inflammation of the joints. It affects at least 52 million adults in the United States – that’s more than 1 out of every 5 people, according to the CDC. Although medication has improved in recent years, the diversity in pathogenic pathways in certain types of arthritis, for example, rheumatoid arthritis (RA), makes it difficult to pinpoint and alleviate pain in specific joints. Often times, clinical trials for drug treatments focus on alleviating [more…]

Could Epigenetics Rescue Cognitive Impairment Caused by Getting Old?

May 10, 2016 Bailey Kirkpatrick

As we get older, our cognitive ability declines, especially our memory. Although aging-related cognitive impairment occurs naturally, humans have been fascinated since ancient times with uncovering a “fountain of youth” to ensure that our beauty, minds, and youthful qualities stay with us forever. What if we could stave off or protect our brain function as we age? With new research in epigenetics, we may be closer to finding out what’s behind memory loss and cognitive impairment. A study published in [more…]

Histone Modifications Reveal Further Insight into the Process of Aging

February 23, 2016 Bailey Kirkpatrick

Epigenetic research on the potential molecular causes of aging has piqued the curiosity of many people who want to know if it’s possible to slow aging or, perhaps, stop it altogether. The process of aging comes along with physiological changes that decrease the body’s ability to repair tissue and increase vulnerability to metabolic diseases. Overall, metabolic activity levels are reduced and missteps in gene activity regulation occur more often as one ages. In a new article published in EMBO Reports, [more…]

ChIP Reveals Unexpected Insight into Flatworm Tissue Regeneration and Histone Modifications

January 19, 2016 Bailey Kirkpatrick

Planaria, or flatworms, are often used as a model organism to investigate the fascinating process of how tissues and organs can regenerate. The flatworm has numerous stem cells called neoblasts and, when it’s injured, this intriguing creature can actually restore its own body parts. Researchers conducted the study at the Stowers Institute for Medical Research in the lab of Alejandro Sánchez Alvarado, Ph.D., a Howard Hughes Medical Institute investigator. In two related studies, they examined stem cell differentiation and the [more…]

1 2