RNA Methylation Gives Epigenetic Clues to Strengthening Memory

rna methylation, m6a and memory

Memory is a complex process, one that we have only just begun to understand. Research hints that it might be possible for histone modification to degrade memory if we don’t get enough sleep or that certain epigenetic anti-cancer drugs known as HDAC inhibitors could sharpen memory. RNA methylation is an epigenetic mechanism that has been recently gained a lot of attention in the field of epigenetics. Now, scientists have discovered that the epigenetic mark found on RNA, called m6A, or N6-methyladenosine, could help strengthen memory formation.

Timothy Bredy, associate professor of neurobiology & behavior from University of California, Irvine (UCI), led a team of researchers from UCI and the University of Queensland to investigate RNA methylation and memory. The group recently published their study in the Journal of Neuroscience. Their results indicated that RNA methylation may play a role in forming long-term memories. The epigenetic modification known as RNA methylation is defined as the addition of a methyl group to RNA, forming m6A. Modifications that occur to RNA can impact how it functions in a cell, even though researchers aren’t certain yet whether m6A is dynamically regulated by experience.

In this study, the team found that the enzyme that removes methyl groups from RNA, known as RNA demethylase, was linked to memory in male mice. Specifically, a reduction in the levels of RNA demethylase in the brain was connected to an upregulation of m6A in the brain and a boost in the formation of memories.

Jocelyn Widagdo, co-lead author and postdoctoral fellow from the Queensland Brain Institute in Australia, explained, “By genetically silencing an enzyme in a specific region of the brain involved in memory and adaptive behavior, we saw much better memory recall in mice.”

The team set out to see if there might be a role that RNA methylation plays in memory formation, looking at an area of the brain in mice known as the medial prefrontal cortex (mPFC). The mPFC has been connected to the encoding of fear memory in previous investigations. Using a technique called methylated RNA immunoprecipitation sequencing (MeRIP-seq), the researchers assessed genome-wide RNA methylation in brain tissue after the mice had been trained to do a learning task. They found that m6A was upregulated, which was linked to enhanced consolidation of memory.

“Our findings show that memory processing is not just influenced by epigenetic control over our DNA but also occur at the level of RNA, variations in which act like a messenger in our cells,” said Bredy. “m6A shows enormous potential because the process can rapidly fine-tune our gene function and expression, which is often impaired in a variety of neurological disorders.”

SEE ALSO:   Natural Compound in Garlic Uses Epigenetics to Fight Ovarian Cancer

Because this research is preliminary, the group suggests that additional studies should be conducted to learn about the role of m6A, especially in regard to other forms of learning and whether the process is disrupted in disorders related to memory, such as phobia or post-traumatic stress disorder.

 

Source: Widagdo, J., Zhao, Q-Y., Kempen, M-J., Tan, M.C., Ratnu, V.S., Wei, W., Leighton, L., Spadaro, P.A., Edson, J., Anggono, V., Bredy, T.W. (2016).  Experience-Dependent Accumulation of N6-Methyladenosine in the Prefrontal Cortex Is Associated with Memory Processes in Mice. Journal of Neuroscience, 36(25): 6771.

Reference: University of California, Irvine. UCI, Queensland scientists identify new switch to boost memory. 22 Jun 2016. Web.

Related Articles

Bailey Kirkpatrick
About Bailey Kirkpatrick 164 Articles
Bailey Kirkpatrick is the Senior Editor at What Is Epigenetics and a science writer with a background in epigenetics and psychology with a passion for conveying scientific concepts to the wider community. She enjoys speculating about the implications of epigenetics and how it might impact our perception of wellbeing and the development of novel preventative strategies. When she’s not combing through research articles, she also enjoys discovering new foods, taking nighttime strolls, and discussing current events over a barrel-aged sour beer or cold-brewed coffee.

WIE-logo-icon

If you like reading our articles…

Join our e-newsletter! Stay up-to-date with our weekly posts on epigenetics and health, nutrition, exercise, and more.

More in News & Reviews
menopause may epigenetically speed up aging
Menopause and Insomnia Might Epigenetically Speed Up Aging

For years, scientists have disagreed on whether menopause causes aging or aging leads to menopause, giving rise to a “which...

Close